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1. Introduction 
This deliverable describes the work related to tasks T4.1: Multi-task SSL 
approaches for skin lesion assessment, and T4.2: Multi-task SSL approaches 
for lung nodule malignancy detection.  
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1.1. Multi-task SSL approaches for skin lesion 
assessment 

 
In this task, we have studied the applicability of the multi-task Self-Supervised 
Learning (SSL) approach, described in D3, for the recognition of skin lesion 
images. Specifically, we used the International Skin Image Collaboration (ISIC) 
2019 dataset that presents 8 types of skin lesions. The dataset used for this 
study consists of three skin lesion datasets collected independently, namely, 
HAM 10000 [12], BCN_20000 [13], and MSK [14]. Combined, the three 
datasets contain 25331 annotated training images which we split into the 
training and validation set of 20264 and 5067 images, respectively. 
 
A pre-print manuscript of this work, with the complete description of 
experiments and results, can be found in [11]. In it, we explore the benefits of 
combining multiple-SSL in the training of a deep training model for the 
classification of images depicting skin lesions and compare the obtained 
performances with a purely Supervised learning approach. In particular, we 
demonstrate that sequential curricular pre-training on multiple pretext tasks 
(Relative Location, MoCo-v2 and ODC) outperforms its fully-supervised 
counterpart, even when the latter is pre-trained on a large-scale dataset, such 
as ImageNet. We show that at least four combinations of three SSL tasks 
outperform ImageNet pretraining, with the best combination reaching 75.44% of 
balanced accuracy on the validation set (+2.94% compared to the ImageNet 
pretraining). Moreover, we present evidence that effective curriculum orderings 
of the SSL tasks correlate with increasing downstream accuracies obtained for 
the individual SSL task, therefore, reducing the search space when approaching 
a new task. A summary of the obtained results is presented in Table 1. 
 

 
Figure 1 Class activation maps of classifiers with and without pretraining on pretext 
tasks. In the shown samples, classifiers that had no pretraining tend to focus on 
irrelevant parts of the images (black surrounding areas) and incorrectly classify skin 
lesions.   
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In [11], we demonstrate qualitative results, in the form of Class Activation Maps 
(CAMs), showing that curriculum SSL pretraining improves the final model, 
focusing more of its attention on the lesions. An example of such qualitative 
results can be found in Figure 1. 
 
Table 1 Balanced accuracies for the evaluated single- and multisource transfer settings 
for the ISIC-19 skin lesion recognition task. The right-most column indicates whether the 
pretraining strategy led to a higher classification accuracy than supervised pretraining 
on ImageNet. The column ”δ” indicates how the performance of a combination of pretext 
tasks differs from an individual pretext task. The left-most column shows whether a 
combination follows Curriculum (C), Anti-Curriculum (AC) or Mixed Curriculum (MC) 
ordering. 

 
 
 

1.2. Multi-task SSL approaches for lung nodule 
malignancy detection 

 
Given the problems of lack of structure in the CT lung-scan datasets, which 
have been reported intermediate reports of the project, this task has been re-
oriented to evaluation on medical imaging databases of a similar modality. 
Specifically, we have used Chest X-Ray (CXR) images which, contrary to skin 
lesion images, represent medical images not obtained by optical means. In this 
task, we have analyzed the benefits of two strategies for CXR image 
classification: i) a curricular SSL training scheme (Section 1.2.1), and the 
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generation of synthetic CXR images to train deep learning models 
(Section 1.2.2). 
 

1.2.1. Curricular SSL training for COVID-19 pneumonia recognition in CXR 
images 

 
In this task, we evaluate the benefits of a curricular Self-Supervised Learning 
(SSL) pretraining scheme with respect to fully supervised training regimes for 
pneumonia recognition on CXR images of Covid-19 patients. The complete 
description of experiments and results can be found in [1].  We have used the 
curricular SSL training scheme proposed in D3, with learning-rate (LR) selection 
in each training step (both SSL steps and downstream classification) using the 
following policy: 

• Each training step is repeated, using different LR values taken from a 
pre-defined range, for a limited number of epochs. 

• The LR that leads to the highest performance (or lowest loss value) on 
the training task is used to train the model for the full number of epochs 

 
For this evaluation, we have used the SIIM-FISABIO-RSNA COVID-19 
Detection dataset [2], which collects CXR images of Covid-19 patients. The 
SIIM-FISABIO-RSNA training data consists of 6,334 chest scans and is built 
from two datasets: BIMCV-COVID19+ [3] and MIDRC-RICORD [4]. We show 
that curricular SSL pretraining, which leverages unlabelled data, outperforms 
models trained from scratch, or pretrained on ImageNet, indicating the potential 
of performance gains by SSL pretraining on massive unlabelled datasets. We 
show that a combination of SSL tasks can outperform pretraining on ImageNet, 
or training directly with the target data. With our best configuration, MoCo v2 + 
SwAV + Relative Location, we achieve a +1.98% accuracy increase over the 
baselines. The results provide evidence that additional SSL tasks can increase 
the performance of the model compared to pretraining with only one SSL task. 
A summary of the performance results is shown in Table 2 Balanced accuracies 
and AIL scores for the curricular SSL-task pretraining con-figurations. 
Sequential orderings for SSL-tasks read left to right. The curriculum column 
indicates whether a SSL-task combination follows a curriculum ordering. 
Results in bold refer to the highest score of each block, while results in blue are 
the highest scores overall. 
. 
Also, literature indicates that recent deep learning systems targeting disease 
detection from CXRs, rather than learning on the medical pathology evidence, 
rely on confounding factors [5], out of the lung regions, as a learning shortcut. 
These confounding factors are prone to be dependent on the training dataset. 
Therefore, in [1] we propose a strategy to quantitatively compare different 
models in terms of the degree of attention they present in the lung regions. This 
strategy is used to show evidence that SSL pretraining (and curricular SSL 
pretraining) is beneficial to focus the model’s attention on the region of interest 
of the CXR image, in this case, the lungs. These results indicate that SSL-
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pretrained models are prone to be more robust to the external confounding 
factors, increasing the generalization capabilities of the deep learning solution. 
This study is based on an AIL (Attention Inside Lungs) score which allow us to 
compare the level attention of in-the-lung regions of several models. Higher AIL 
values correspond to models with a higher focus in the lung regions. A 
summary of the AIL score results is shown in Table 2. 
 
Table 2 Balanced accuracies and AIL scores for the curricular SSL-task pretraining con-
figurations. Sequential orderings for SSL-tasks read left to right. The curriculum column 
indicates whether a SSL-task combination follows a curriculum ordering. Results in bold 
refer to the highest score of each block, while results in blue are the highest scores 
overall. 

 
 
 

1.2.2. Generation of synthetic data to train deep learning models for CXR 
image classification  

 
In this task, we focus on exploring the use of synthetic data that can provide us 
with large datasets without any privacy issues at a reduced cost. The complete 
description of experiments and results can be found in [6]. To achieve that, we 
have employed a synthetic data generator based on Generative Adversarial 
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Networks [7][8]. Ideally, these artificially generated images should not contain 
sensitive personal information while maintaining statistical features like the 
original images. Figure 2 shows some examples of the generated synthetic 
images. 
 

 
Figure 2 Synthetic sample images generated using an approach based on Generative 
Adversarial Networks[8].   

 
Based on [8], pretrained on the images of the CheXpert dataset 
(https://stanfordmlgroup.github.io/competitions/chexpert/), we have created a 
dataset composed of different versions considering the presence of isolated 
findings (i.e., 0s versions) or combined with other findings in the images (i.e. Xs 
versions). In total, two datasets are generated for a binary problem 
classification: version 1 (No-finding VS Only-Pneumothorax) and version 2 (No-
Finding VS Finding). A third dataset is generated for a four-class problem (No-
Finding VS Pneumotorax VS Pneumonia VS Cardiomegaly). Table 3 
summarizes the generated datasets. 

https://stanfordmlgroup.github.io/competitions/chexpert/
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Table 3 Summary of the synthetic datasets generated for Chest X-ray images 

 
 
Then, the next goal in [6] is to exploit the synthetic data for training and 
adapting algorithms using few real data without annotations. Therefore, this 
goal is approached as an Unsupervised Domain Adaptation (UDA) from 
synthetic to real data for classification tasks.  We employed the DCAN 
approach [9]. At a low level, DCAN uses a Resnet-50 backbone with an 
attention module that is trained using numerous training losses to achieve the 
desired feature alignment. Due to the reduced number of classes, and the lack 
of reliability of the ground truth, we decided to remove from the training loss the 
regularization loss of the ith feature regularizer which aims at solving the over-
correction problems caused by the added feature correction blocks with the 
guide of source data [9]. This what we called ”Our Alignment”. 
 
Table 4 summarizes the UDA results for the different combinations of datasets 
(synthetic version 1, CheXpert and ChestX-ray8[10]) for the presence of 
isolated findings (i.e., 0s version). In this table we can see the results obtained 
in each of the combinations between source and target. As we can see, the 
best option if we use synthetic images as source data is Our UDA approach, 
while if we use real images as source data the best option is not to apply any 
alignment. Also, as expected, when using CheXpert as target data, the best 
option is to use synthetic images as source data, with quite a difference (≈ 8%). 
This is probably due to the fact that these images have been generated with the 
GAN that was trained using CheXpert. On the contrary, when using ChestX-
ray8, the best option, although with very little difference (<2%) is to use the 
CheXpert data. This makes sense as it is a larger dataset and probably 
contains more information. Finally, it should be noted that we have not been 
able to run UDA using ChestX-ray8 as source and CheXpert as target; the 
model always predicted the same class, thus achieving a 50% Balanced 
accuracy. 
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Table 4 Summary of UDA results for dataset version 1 with isolated findings.  
Best result is indicated in bold 

 
 
Table 5 and Table 6 present the results for the presence of isolated findings 
(i.e., 0s version) and the synthetic datasets version 1 and version 2. In Table 5 
the best result using synthetic data is using our alignment, reaching 52.9%, far 
away from the 74.7% obtained from training and evaluating on CheXpert. Due 
to these results, we did not continue experimenting with other datasets here 
either. In Table 6, as expected, the results are not bad, but they are not too 
good either. In the case of CheXpert, UDA works very badly, with DCAN failing 
to learn anything and always predicting the same class (that’s why it gets 25% 
correct), but without using UDA we managed to improve that 25% to 30.1% 
(+5.1%). Despite this improvement, we are still a bit far from the 41.5% (-11.3%) 
obtained using CheXpert over CheXpert. In the case of ChestX-ray8, the results 
are surprisingly better, using our UDA alignment we achieved 30.3%, which is a 
little closer to the ChestX-ray8 result of 36.7% (-6.4%). 
 

Table 5 Summary of UDA results for dataset version 2 with isolated findings.  
Best result is indicated in bold 
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Table 6 Summary of UDA results for dataset version 3 with isolated findings.  
Best result is indicated in bold 

 
 
As a conclusion of the work done in [6], the results obtained in the binary 
problem with 0s dataset are promising, so it seems like the idea works, but as 
soon as the classification task start getting harder the problems begin. This 
behaviour could be explained by the fact that synthetic data is visually plausible 
but it is not able to generate new information. Regarding the use of Domain 
Adaptation algorithms, these seem to improve the results, but like classical 
algorithms, they also require sufficiently representative data. We have proved 
that, according to [8], a key challenge for applying AI in the medical field is the 
representativeness of the data employed for training AI models. 
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